\(\int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \, dx\) [813]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 171 \[ \int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \, dx=\frac {6 A b^2 \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d \sqrt {\cos (c+d x)}}+\frac {10 b^3 B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d \sqrt {b \cos (c+d x)}}+\frac {10 b^2 B \sqrt {b \cos (c+d x)} \sin (c+d x)}{21 d}+\frac {2 A b (b \cos (c+d x))^{3/2} \sin (c+d x)}{5 d}+\frac {2 B (b \cos (c+d x))^{5/2} \sin (c+d x)}{7 d} \]

[Out]

2/5*A*b*(b*cos(d*x+c))^(3/2)*sin(d*x+c)/d+2/7*B*(b*cos(d*x+c))^(5/2)*sin(d*x+c)/d+10/21*b^3*B*(cos(1/2*d*x+1/2
*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)/d/(b*cos(d*x+c))^(1/2)+
10/21*b^2*B*sin(d*x+c)*(b*cos(d*x+c))^(1/2)/d+6/5*A*b^2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*Ellipt
icE(sin(1/2*d*x+1/2*c),2^(1/2))*(b*cos(d*x+c))^(1/2)/d/cos(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.14 (sec) , antiderivative size = 171, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {2827, 2715, 2721, 2719, 2720} \[ \int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \, dx=\frac {6 A b^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{5 d \sqrt {\cos (c+d x)}}+\frac {2 A b \sin (c+d x) (b \cos (c+d x))^{3/2}}{5 d}+\frac {10 b^3 B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d \sqrt {b \cos (c+d x)}}+\frac {10 b^2 B \sin (c+d x) \sqrt {b \cos (c+d x)}}{21 d}+\frac {2 B \sin (c+d x) (b \cos (c+d x))^{5/2}}{7 d} \]

[In]

Int[(b*Cos[c + d*x])^(5/2)*(A + B*Cos[c + d*x]),x]

[Out]

(6*A*b^2*Sqrt[b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(5*d*Sqrt[Cos[c + d*x]]) + (10*b^3*B*Sqrt[Cos[c + d*x
]]*EllipticF[(c + d*x)/2, 2])/(21*d*Sqrt[b*Cos[c + d*x]]) + (10*b^2*B*Sqrt[b*Cos[c + d*x]]*Sin[c + d*x])/(21*d
) + (2*A*b*(b*Cos[c + d*x])^(3/2)*Sin[c + d*x])/(5*d) + (2*B*(b*Cos[c + d*x])^(5/2)*Sin[c + d*x])/(7*d)

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rubi steps \begin{align*} \text {integral}& = A \int (b \cos (c+d x))^{5/2} \, dx+\frac {B \int (b \cos (c+d x))^{7/2} \, dx}{b} \\ & = \frac {2 A b (b \cos (c+d x))^{3/2} \sin (c+d x)}{5 d}+\frac {2 B (b \cos (c+d x))^{5/2} \sin (c+d x)}{7 d}+\frac {1}{5} \left (3 A b^2\right ) \int \sqrt {b \cos (c+d x)} \, dx+\frac {1}{7} (5 b B) \int (b \cos (c+d x))^{3/2} \, dx \\ & = \frac {10 b^2 B \sqrt {b \cos (c+d x)} \sin (c+d x)}{21 d}+\frac {2 A b (b \cos (c+d x))^{3/2} \sin (c+d x)}{5 d}+\frac {2 B (b \cos (c+d x))^{5/2} \sin (c+d x)}{7 d}+\frac {1}{21} \left (5 b^3 B\right ) \int \frac {1}{\sqrt {b \cos (c+d x)}} \, dx+\frac {\left (3 A b^2 \sqrt {b \cos (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{5 \sqrt {\cos (c+d x)}} \\ & = \frac {6 A b^2 \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d \sqrt {\cos (c+d x)}}+\frac {10 b^2 B \sqrt {b \cos (c+d x)} \sin (c+d x)}{21 d}+\frac {2 A b (b \cos (c+d x))^{3/2} \sin (c+d x)}{5 d}+\frac {2 B (b \cos (c+d x))^{5/2} \sin (c+d x)}{7 d}+\frac {\left (5 b^3 B \sqrt {\cos (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{21 \sqrt {b \cos (c+d x)}} \\ & = \frac {6 A b^2 \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d \sqrt {\cos (c+d x)}}+\frac {10 b^3 B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d \sqrt {b \cos (c+d x)}}+\frac {10 b^2 B \sqrt {b \cos (c+d x)} \sin (c+d x)}{21 d}+\frac {2 A b (b \cos (c+d x))^{3/2} \sin (c+d x)}{5 d}+\frac {2 B (b \cos (c+d x))^{5/2} \sin (c+d x)}{7 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.11 (sec) , antiderivative size = 100, normalized size of antiderivative = 0.58 \[ \int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \, dx=\frac {(b \cos (c+d x))^{5/2} \left (252 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+100 B \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+2 \sqrt {\cos (c+d x)} (65 B+42 A \cos (c+d x)+15 B \cos (2 (c+d x))) \sin (c+d x)\right )}{210 d \cos ^{\frac {5}{2}}(c+d x)} \]

[In]

Integrate[(b*Cos[c + d*x])^(5/2)*(A + B*Cos[c + d*x]),x]

[Out]

((b*Cos[c + d*x])^(5/2)*(252*A*EllipticE[(c + d*x)/2, 2] + 100*B*EllipticF[(c + d*x)/2, 2] + 2*Sqrt[Cos[c + d*
x]]*(65*B + 42*A*Cos[c + d*x] + 15*B*Cos[2*(c + d*x)])*Sin[c + d*x]))/(210*d*Cos[c + d*x]^(5/2))

Maple [A] (verified)

Time = 9.01 (sec) , antiderivative size = 301, normalized size of antiderivative = 1.76

method result size
default \(-\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, b^{3} \left (240 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-168 A -360 B \right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (168 A +280 B \right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-42 A -80 B \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-63 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+25 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{105 \sqrt {-b \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b}\, d}\) \(301\)
parts \(-\frac {2 A \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, b^{3} \left (-8 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+8 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{5 \sqrt {-b \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b}\, d}-\frac {2 B \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, b^{3} \left (48 \left (\cos ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-120 \left (\cos ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+128 \left (\cos ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-72 \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+5 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+16 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{21 \sqrt {-b \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b}\, d}\) \(425\)

[In]

int((cos(d*x+c)*b)^(5/2)*(A+B*cos(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

-2/105*((2*cos(1/2*d*x+1/2*c)^2-1)*b*sin(1/2*d*x+1/2*c)^2)^(1/2)*b^3*(240*B*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2
*c)^8+(-168*A-360*B)*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+(168*A+280*B)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/
2*c)+(-42*A-80*B)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-63*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2
*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+25*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2
-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))/(-b*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)/sin(
1/2*d*x+1/2*c)/((2*cos(1/2*d*x+1/2*c)^2-1)*b)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.13 (sec) , antiderivative size = 171, normalized size of antiderivative = 1.00 \[ \int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \, dx=\frac {-25 i \, \sqrt {2} B b^{\frac {5}{2}} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 25 i \, \sqrt {2} B b^{\frac {5}{2}} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 63 i \, \sqrt {2} A b^{\frac {5}{2}} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 63 i \, \sqrt {2} A b^{\frac {5}{2}} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (15 \, B b^{2} \cos \left (d x + c\right )^{2} + 21 \, A b^{2} \cos \left (d x + c\right ) + 25 \, B b^{2}\right )} \sqrt {b \cos \left (d x + c\right )} \sin \left (d x + c\right )}{105 \, d} \]

[In]

integrate((b*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c)),x, algorithm="fricas")

[Out]

1/105*(-25*I*sqrt(2)*B*b^(5/2)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 25*I*sqrt(2)*B*b^(5
/2)*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 63*I*sqrt(2)*A*b^(5/2)*weierstrassZeta(-4, 0,
weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 63*I*sqrt(2)*A*b^(5/2)*weierstrassZeta(-4, 0, wei
erstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*(15*B*b^2*cos(d*x + c)^2 + 21*A*b^2*cos(d*x + c) +
 25*B*b^2)*sqrt(b*cos(d*x + c))*sin(d*x + c))/d

Sympy [F(-1)]

Timed out. \[ \int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \, dx=\text {Timed out} \]

[In]

integrate((b*cos(d*x+c))**(5/2)*(A+B*cos(d*x+c)),x)

[Out]

Timed out

Maxima [F]

\[ \int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} \left (b \cos \left (d x + c\right )\right )^{\frac {5}{2}} \,d x } \]

[In]

integrate((b*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c))^(5/2), x)

Giac [F]

\[ \int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} \left (b \cos \left (d x + c\right )\right )^{\frac {5}{2}} \,d x } \]

[In]

integrate((b*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c))^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \, dx=\int {\left (b\,\cos \left (c+d\,x\right )\right )}^{5/2}\,\left (A+B\,\cos \left (c+d\,x\right )\right ) \,d x \]

[In]

int((b*cos(c + d*x))^(5/2)*(A + B*cos(c + d*x)),x)

[Out]

int((b*cos(c + d*x))^(5/2)*(A + B*cos(c + d*x)), x)